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1. Challenge: when to stop iterating FEM solutions

Consider the Poisson equation −∇ · (κ(x)∇u(x)) = f (x) on Ω.

High-order finite elements discretization yields Ax = b.

Using conjugate gradient (CG), obtain a sequence x0, x1, · · · , xk to approximate the

solution x. The associated residual is rk = b − Axk.

Under the energy norm,

‖u − uk
h‖E︸ ︷︷ ︸

total error

= ‖u − uh‖E︸ ︷︷ ︸
discretization error

+ ‖uh − uk
h‖E︸ ︷︷ ︸

algebraic error = ‖x − xk‖A
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What is a good
stopping criterion?

Maintaining solution accuracy

Terminating CG earlier

Robust to h, N , mesh

distortion, and κ(x)

Cost-effective in computation

and storage

2. Existing stopping criteria

A commonly adopted stopping criterion [2, 3]

estimated algebraic error � estimated total error

Error estimation for CG (algebraic error) [4]

Choose the delay parameter d such that ‖x − xk+d‖A � ‖x − xk‖A.

ηalg := ‖xk+d − xk‖A.

A posteriori error estimation for FEM (total error)

Define the element residual, rE and the edge residual rJ by

rE

∣∣
K

= f + ∇ ·
(
κ(x)∇uk

h

)
, rJ|` = −

[(
κ(x)∇uk

h

)
· n`

]
.

Residual a posteriori estimator [5]

η2
R =

∑
K∈Th

h2
K

κKN 2‖rE‖2
K +

∑
`∈E

h`

κ`N
‖rJ‖2

` , (C1) ηalg ≤ τ ηR.

Flux recovery-based estimator [6, 7] Reconstructing the numerical flux σK

by projecting κ(x)∇uk
h(x) onto H(div) space.

η2
BDM :=

∑
K∈Th

∥∥∥κ(x)−1/2 (σK − κ(x)∇uk
h(x)

)∥∥∥2
, (C2) ηalg ≤ τ ηBDM.

3. Stopping criterion derived from residual

The n-th component of the linear residual is

(rk)n = (φn, f ) −
∑
K∈Th

(
κ(x)∇φn, ∇uk

h

)
K

.

Integrating the last term by parts, we obtain

(rk)n=
∑

K∈Th
(φn, rE)K −

∑
`∈E (φn, rJ)`

= (Rk)n + (Fk)n.

Introducing theweightedL2 norm ‖·‖w relevant to κ(x), we define the indicator
ηRF

ηRF := ‖Rk‖w + ‖Fk‖w,

with the associated stopping criterion:

(C3) ‖rk‖w ≤ τ ηRF.

For highly variable piecewise constant coefficients κ(x), where the good pre-

conditioner is not available and CG converges slowly, we partition the domain

Ω into subdomains Ωp, p = 1, . . . , P , based on the value of κ(x).
We propose a subdomain-based stopping criterion by restricting Rk, Fk, and

rk to Ωp

(C4) ‖rp
k‖w ≤ τ ηp

RF, ∀p = 1, . . . , P.

4. Numerical results

Define the quality ratio of a criterion as

quality ratio := ‖u − uk∗

h ‖E

‖u − uh‖E
,

with uk∗

h as the first solution that satisfies the stopping condition. Set τ = 1/20.

Highly anisotropic mesh

Solve the Poisson problem on [−1, 1]2 with κ(x) = 1, using a highly anisotropic

mesh of triangles, as shown in fig. 1.
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Figure 1. Mesh with minimal

angles near π/50.
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Figure 2. Arrows mark the criteria-suggested termination

points for N = 6. (C1) leads to early termination.

Criterion
N = 4 N = 6 N = 8

iter qual. iter qual. iter qual.

(C1) ηalg ≤ τηR 7 1.60 49 1.84 141 4.78

(C2) ηalg ≤ τηBDM 31 1.00 91 1.00 198 1.00

(C3) ‖rk‖w ≤ τηRF 28 1.00 88 1.01 199 1.00

‖rk‖ ≤ 10−6‖r0‖ 87 1.00 155 1.00 235 1.00

Table 1. Numbers of iterations (iter) and quality ratios (qual.). The criterion (C3) consistently

exhibits the best performance for almost all polynomial degrees.

Highly variable coefficient

Consider the Poisson equation on an L-shaped domain with κ(x) shown in fig. 3. In fig. 5, criteria

(C1)-(C3) lead to premature termination, while only (C4) ensures reliable termination. Referring to the

domain partition in fig. 4, termination behavior is distinct in each subdomain, with the interior

subdomain requiring more iterations.
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Figure 3. Mesh and κ(x)

Figure 4. Partition for (C4)

showcasing interior (orange),

interface (blue), and exterior

(white) subdomains.
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Figure 5. Convergence history in the whole domain and its subdomains

5. Summary

robust to h,N distortion κ(x) inexpensive

‖rk‖ ≤ 10−6‖r0‖ 7 7 7 3

(C1) ηalg ≤ τηR 3 7 7 3

(C2) ηalg ≤ τηBDM 3 3 7 7

(C3) ‖r‖w ≤ τηRF 3 3 7 3

(C4) subdomain-based 3 3 3 3
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